Acoustic Training - Automotive and Building Acoustics

Time: 1 - 5 Days

Training Details

Basics of Acoustics –	 Introduction to Acoustics
Total Time 3-4 Hrs	 Sound waves
	 Sound wave properties
	 Sound Propagation in different materials
	 Wavelength, frequency & amplitude
	 Pitch, Loudness & Timbre
	 Sound pressure, sound intensity and sound power
	Sound - like and dislike
	 dB Level, its perception & measurement
	 Sound Level Meter Addition of dB and addressing
	Addition of dB and subtraction
	 Frequency Weighing
	 Sound percention
	 Sound Sources- Monopole, Dipole, Quadrupole and Linear
	Inverse Square Law, Directivity
	 Sound Fields – Nearfield, Farfield, Free and Reverberant
	 Sound absorption, reflection, refraction, diffraction and transmission
	 Octave Bands
	 Principals of Noise Control
	 Noise Sources
	 Noise control Techniques-Active and Passive
	 Noise control materials-Absorption, Transmission and vibration damping
Noise and Vibration	Acoustic measurement-Why is it important?
Measurements -	 Sound terminology
Total Time 2-3 Hrs	 Noise and Vibration sensors
	 Microphone Types – Condenser, Dynamic and Ceramic
	 Microphone Specifications
	 Vibration Measurement
	 Impedance Head, Impact hammer
	 Loudspeaker and Vibration Shaker
	 Sound intensity Probe
	 Data Acquisition System (DAQ)- Signal Conditioner, ADC, Bus
	 Time Frequency Domains
	 Filters and Filter Types
	 Acoustic Camera and Its Applications

	 What are acoustic materials
Acoustic Materials –	 Acoustic material – Types and Classification
Total Time 7 - 9 Hrs	What is sound absorption and sound insulation
	Sound absorption coefficient and sound transmission loss
	 Testing of Acoustic Materials & Testing Standards
	 Fact and Figures about Test Methods
	 Sound absorption – Normal and random incidence
	 Sound transmission loss – Normal and random incidence
	 Sound insertion loss
	 Sample Cutting, Preparation
	 Impedance Tubes and Reverberation Chamber, Difference
	 Acoustic materials - Biot Parameters
	 Effect of Biot Parameters on SAC and STL
	 Effect of sample size, area and thickness
	 Effect of leakages – Sound Transmission Loss
	 What NRC, SAA, STC, R_w, α_w
	 Significance of Acoustic Ratings
	 Effect of Density, Thickness, Films, Fabrics on Acoustic performance
	 Physical Significance of films/ foils, fabrics, multilayer composites
	 Interpretation & analysis of TDS for acoustic samples
	 Design of acoustic treatments for Noise Problems
	 Applications of acoustic materials at vehicle level
	 Design of dash, carpet, seats, headliners, etc.
	 Effect of leakages/holes on Sound insulation and their control
	 Cavity filler materials- properties, applications
	 Cavity filler materials- test methods and standards
	 Multilayer acoustic treatments, selection of layers and their performance evaluation
	 New testing techniques for acoustic treatments-vehicle component level
	 Sample Selection for different noise problems / acoustic treatments
	 Market Requirements for NRC, SAA & STC
	 Simulation softwares for Acoustic performance prediction
	 Acoustic material applications- Aerospace, Automobile, DG Set, Marine &
	Trains
Damping Materials –	 Vibration and panel structural response
Total Time 2 Hrs	 Abatement of vibrations
	 Damping materials and types
	 Viscoelastic materials
	 Testing methods for Damping materials
	 Test Standards
	 Effect of damping materials
	 Effect of Temperature on damping materials
	 Different types of Damping Treatment
	 Reduced frequency nomograms (REN)
	 Applications of Damping materials
	- Applications of Damping materials

Psycho-Acoustics –	 Introduction
Total Time 2-3 Hrs	 Human Ear
	 Hearing- Working of Human Ear
	 Threshold of Quietness
	 Masking
	 Sound quality
	 Pitch and Pitch Strength
	 Loudness
	 Sharpness
	 Roughness
	 Binaural Hearing
	 Jury Testing
	 Test Standards
Noise Sources –	 NVH Basics
Total Time 3-4 Hrs	 Wanted, Unwanted and Brand sound
	 Market Requirement -NVH
	 Automotive Noise Sources
	 Powertrain Noise
	 Exhaust System
	 Road/Tyre Noise and Generation Phenomenon
	 Tyre Cavity Noise and its mitigation
	 Wind Noise and Generation Phenomenon
	 Buzz, Squeak and Rattle
	 Advanced Simulation Software
Active Noise Control	 Noise Pollution Problem
& Signal Processing	 ANC History
Total Time 2-3 Hrs	 Physical Concepts
	 ANC Systems Classification
	 ANC Adaptive Algorithms
	 Signals
	 Properties of the FFT
	 Sampling and digitizing
	 Aliasing and filters
	 Leakage and windows
	 Averaging techniques Autopower, crosspower and coherence
	 what is an order? FID UP and an annualize filters
	FIK, IIK and re-sampling filters Time Frequency Mathematic
	Ime Frequency Methods Cibbo Rhomemonian
	 State

Building Acoustics	 Reverberation Time
Total Time 4-5 Hrs	 Effect of Reverberation time
	 Acoustic Performance Criteria : Market Terms
	 Acoustic Materials : Market Requirements
	 Acoustic Materials – Classical and Modern Materials
	 Sound Absorption, Sabies absorption
	 Sound Insulation - Factors affecting transmission - partition area, receive
	room absorption, mass, stiffness, damping, separation and isolation, effects
	of holes and gaps.
	 Single and double-leaf constructions, floating floors and suspended ceilings
	 Impact isolation class (IIC), limitations of single number ratings, laboratory vs
	field performance,
	 Effect of Sound insulation
	 Mass law & coincidence dip of the sound insulation performance curve
	 Design of Building acoustic products for interior and exterior
	 In Lab and Onsite Testing of Reverberation and insulation
	 Acoustic Ratings – Test Standards
	 Interpretation of SAC, STL, NRC, SAA, STC, Rw, αw, LnTw, D, DnT
	 Test standards – ISO / ASTM / IS standards
	 STC Target setting and composites
	 Classical and Modern acoustical materials
	 Glass windows and Doors Design
	 Sound insulation drywall partitions and affecting parameters
	 NC Curves and their significance
	 Custom applications of Customer Products
	 NIC Demo
	 Demo of RT Measurement, Background Noise Measurement, NIC
	Measurement
	 Applications of Customer Products

Deliverables –

After complete training, Engineers will have complete understanding of sound package materials, they will able to perform following activities

- Understand different sound package materials along with their properties
- Selection of appropriate acoustic material/s for noise control applications
- Design and analysis of acoustic treatments
- Finalizing the test requirements as per international or national standards
- Control of vehicle noise at different locations inside a vehicle
- Understanding of complete material input requisites for vehicle level simulation

Customer can choose any topic/s for the training as per their interest and timeline. Training can be provided onsite or online also. We recommend onsite training as it is more beneficial for the Engineers.

Travelling charges will be extra.

